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Abstract
In the present communication we introduce the transformed Tavis–Cummings
problem as a physical model to discuss constants of the motion (invariants) for
such a system. The Hamiltonian we have used can be regarded as a most general
time-dependent frequency converter model. The advantage of the present work
is to handle a real physical problem which represents the interaction between
two coupled oscillators. In this context we obtained real and complex classes of
linear and quadratic invariants. We have employed the real quadratic invariants
to define a new Dirac operator, from which the wavefunction in the coherent
states is obtained.

PACS number: 03.65.Fd

1. Introduction

The construction of invariant operators in quantum mechanics has attracted much attention
in the last few decades. The simplicity of the rules for constructing these invariants and the
instructive relation of the invariants to the asymptotic expansion of adiabatic invariant theory
have stimulated an interest in using the invariants to solve some explicit quantum-mechanical
problems [1, 2]. Exact invariants for time-dependent systems are decisive for investigating
the physical properties of these systems. The simplest example illustrating this is the usual
time-dependent harmonic oscillator [3–13]. The author of [1] introduced in his papers the
role of these invariant operators, in which he describes a quantum system governed by a time-
dependent Hamiltonian. The author showed that, if the system admits an invariant Î (t) among
its observables, it is possible to find a privileged basis of eigenstates of this operator, where the
expansion of the state vector on this basis can be performed with independent coefficients. He
in fact handled two different problems in his papers; the first was the time-dependent harmonic
oscillator, while the second was the charged particle in a particular type of time-dependent
classical electromagnetic field. On the other hand, one can see that the diagonalization of a
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quadratic Hamiltonian Ĥ = zTAzT, z = (q̂1, . . . , q̂n, p̂1, . . . , p̂n) with A a real, symmetric
and possibly time-dependent matrix, is important because it leads to a direct construction of all
the possible invariants and constants of the motion. Alternative treatments of invariants are less
systematic. Any time dependence in Ĥ can often be eliminated by canonical transformation.
If this cannot be done, the eigenfrequencies (or growth rates if Ĥ is not positive definite)
are time-dependent. Many authors have discussed the solution of the Schrödinger equation
corresponding to Ĥ , often from a group-theoretical point of view [14–16]. The reduction of
such a Hamiltonian to diagonal form is achieved by means of canonical transformations, which
constitute the symplectic group, and the problem may be reduced to a classification of the Lie
algebra sp(2n,R) into conjugacy classes [17]. As far as one can see, most of the previous
work concentrated on one-dimensional time-dependent systems. However, in this context we
follow up this work and try to find the constants of the motion (invariants) for different types
of problem (two-dimensional time-dependent problem). The problem we consider represents
one of the most fundamental problems in the field of quantum optics, that is the interaction
between atoms and a field. This problem can be described by a Hamiltonian representing
the generalized model of N (>1) two-level atoms occupying the same site and collectively
interacting with a quantized single mode of the field (in the absence of any radiation damping).
This model is known as a generalized Tavis and Cummings (TC) model. The Hamiltonian
representing such a system takes the form

Ĥ

�
= ωâ†â +

1

2
ω0Ĵ z + λ(â†mĴ− + âmĴ +) (1.1)

where â† and â are the boson creation and annihilation operators for the single mode of the
field respectively. The Ĵ operators are the collective angular momentum operators, ω and
ω0 are the field and the atomic frequencies, while λ is the coupling constant. Note that, for
m = 1, equation (1.1) reduces to the usual (TC) model. The operators â† and â satisfy the
commutation relation [â, â†] = 1, while the operators Ĵ−, Ĵ + and Ĵ z satisfy the commutation
relations [Ĵ +, Ĵ−] = 2Ĵ z and [Ĵ±, Ĵ z] = ∓Ĵ±. The equations of motion in the Heisenberg
picture for the Hamiltonian (1.1) are

dâ

dt
= −iωâ − iλmâ†(m−1)Ĵ−

dĴ−
dt

= −iω0Ĵ− + iλâmĴ z. (1.2)

The above equations are nonlinear ordinary differential equations and due to the nature
of the nonlinearity it is not an easy task to deal with them. However, one can overcome
this difficulty and remove it by using the Holstein–Primakoff transformation. These
transformations are given by

Ĵ− =
√
Ĵ − n̂cĉ e−iγ (t) Ĵ + = ĉ†

√
Ĵ − n̂c eiγ (t) n̂ = ĉ†ĉ = 1

2 (Ĵ + Ĵ z) (1.3)

where γ (t) is an arbitrary function of time. Under this transformation the Hamiltonian model
changes from fermion–boson to boson–boson and now takes the form

Ĥ (t)

�
= ωâ†â + ω0ĉ

†ĉ + λ

(
â†m

√
Ĵ − n̂cĉ e−iγ (t) + âmĉ†

√
Ĵ − n̂c eiγ (t)

)
. (1.4)

Furthermore, if we invoke the transformation âm = f (n̂a)b̂ and â†m = b̂†f (n̂a), where
the number operators n̂a and n̂b are connected by n̂a = mn̂b, the Hamiltonian (1.4) becomes

Ĥ (t)

�
= mωb̂†b̂ + ω0ĉ

†ĉ + g(t)(b̂†ĉ e−iγ (t) + b̂ĉ† eiγ (t)) (1.5)

where g(t) is the coupling parameter given by

g(t) = λ

√
Ĵ − n̂c

[
[m(n̂b + 1)]!

(n̂b + 1)!(mn̂b)!

]
Ĵ � n̂c. (1.6)
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In equation (1.5) we have approximated n̂c(t) and n̂a(t) with their C-number time-
dependent functions nc(t) and na(t) by regarding n̂c(t) − nc and n̂a(t) − na as small
perturbations. Here we wish to emphasize that the operators b(b†) and c(c†) satisfy
commutation relations similar to that of the operators a(a†). In fact the Hamiltonian (1.5) can
be regarded as the most general time-dependent frequency converter model. Therefore, if we
set ω0 = −mω, then the above Hamiltonian system represents the SU(2) Lie algebra and,
in this case, one can use the direct properties of the Lie algebra to find the wavefunction for
the transformed Hamiltonian. However, after some manipulations and without any restriction
on the Hamiltonian model we have managed elsewhere to find the most general solution of
the wavefunction using the Lie algebra technique [18]. Furthermore, the statistical properties
of such systems have already been considered (for more details see [19]). In the following
sections we study the constants of the motion related to the time-dependent Hamiltonian (1.5).
For this reason we devote section 2 to considering the exact resonance case (absence of the
detuning parameter). There are two main cases: linear and quadratic invariants, where in
each case we introduce classes of both real and complex invariants. The more complicated
case (off-resonance case) is treated in section 3, where the effect of the detuning parameter
is examined. In section 4 we find the eigenvalues and the corresponding eigenfunctions for
some constants of the motion which we have obtained. Finally we present our conclusion in
section 5.

2. Exact resonance cases

In this section we restrict our treatment to the problem of constants of the motion in the exact
resonance case. We seek linear and quadratic invariants and in each case both real and complex
invariants are considered.

2.1. Linear invariants

2.1.1. Real invariants. It is more instructive to concentrate on finding the linear and the
quadratic invariants for the Hamiltonian (1.5) in the case of off-resonance, i.e. whereω0 �= mω.
However, firstly we consider the fundamental first-degree invariants for this system at exact
resonance in the absence of the time-dependent phase pump γ (t). In this context we handle
two kinds of invariants; the first is real while the second is complex. In the case of resonance
and for γ (t) = 0, the Hamiltonian (1.5) reduces to

Ĥ (t)

�
= ω0(b̂

†b̂ + ĉ†ĉ) + g(t)(b̂†ĉ + b̂ĉ†). (2.1)

We define two pairs of Dirac operators in terms of the coordinates q̂ i and the momentum
p̂i such that

b̂ = (ω0q̂1 + ip̂1)√
2ω0�

ĉ = (ω0q̂2 + ip̂2)√
2ω0�

. (2.2)

Then the Hamiltonian (2.1) takes the form

Ĥ (t) = 1

2

2∑
i=1

(
p̂2
i + ω2

0q̂
2
i

)
+
g(t)

ω0

(
p̂1p̂2 + ω2

0q̂1q̂2
)
. (2.3)

We now introduce a constant of motion I (1)(t) of the form

Î (1)(t) =
2∑
i=1

(αip̂i + βi q̂i ) i = 1, 2 (2.4)
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where αi(t) and βi(t) are arbitrary functions of time. To establish that the operator Î (1)(t) is a
constant of motion, we have to determine the explicit expressions for the functions αi(t) and
βi(t). This can be done if one uses the equation

dÎ (1)

dt
= ∂Î (1)

∂t
+

2∑
i=1

∂Î (1)

∂q̂i

∂Ĥ

∂p̂i
− ∂Î (1)

∂p̂i

∂Ĥ

∂q̂i
= 0. (2.5)

From equations (2.3) and (2.4), together with equation (2.5), and after some calculation
we have

αi(t) = (A1[cos(ω0t + φ1) + k(t)] ± A2[cos(ω0t + φ2)− k(t)]) i = 1, 2 (2.6)

βi(t) = ω0(A1[sin(ω0t + φ1) + k(t)] ± A2[sin(ω0t + φ2)− k(t)]) i = 1, 2 (2.7)

where k(t) = ∫ t
0 g(t

′) dt ′ and A(1,2) and φ(1,2) are arbitrary constants expressible in terms of
αi(0) and βi(0). On the other hand the equations of motion in the Heisenberg picture for the
Hamiltonian (2.3) can be written as

dp̂1

dt
= −ω2

0q̂1 − ω0g(t)q̂2
dp̂2

dt
= −ω2

0q̂2 − ω0g(t)q̂1

(2.8)
dq̂1

dt
= p̂1 +

g(t)

ω0
p̂2

dq̂2

dt
= p̂2 +

g(t)

ω0
p̂1

which can be written in the more attractive form

˙̂q = 1

ω0

(
ω0 g

g ω0

)
p̂ ˙̂p = −ω0

(
ω0 g

g ω0

)
q̂ (2.9)

and their solutions are

q̂1(t) = B1 sin[(ω0t + ψ1)− k(t)] + B2 sin[(ω0t + ψ2) + k(t)]

q̂2(t) = B2 sin[(ω0t + ψ2) + k(t)] − B1 sin[(ω0t + ψ1)− k(t)]
(2.10)

p̂1(t) = ω0[B1 cos[(ω0t + ψ1)− k(t)] + B2 cos[(ω0t + ψ2) + k(t)]]

p̂2(t) = ω0[B2 cos[(ω0t + ψ2) + k(t)] − B1 cos[(ω0t + ψ1)− k(t)]]

where B1,2 are arbitrary constants.
Thus, if one substitutes equations (2.6) and (2.8) into equation (2.4), one has

Î (1)(t) = 2ω0[A1B2 cos(φ1 − ψ2) +A2B1 cos(φ2 − ψ1)] (2.11)

which is constant.
On the other hand one may think of different forms for the linear invariant of the same

system. To see that we define the following operators:

p̂± = p̂1 ± p̂2√
2

(2.10a)

q̂± = q̂1 ± q̂2√
2

(2.10b)

with the properties [q̂±, p̂±] = i�δ±, where δ± is either one if the signs are the same or zero
otherwise. If we substitute equation (2.10) into equation (2.3), we find

Ĥ (t) = 1
2

[
G+(t)

(
p̂2

+ + ω2
0q̂

2
+

)
+G−(t)

(
p̂2

− + ω2
0 q̂

2
−
)]

(2.12)
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where G±(t) = (1 ± g(t)/ω0). Now, if we introduce the transformation P̂ (1,2)(t) =√
G±(t)p̂±(t) and Q̂(1,2)(t) = 1/

√
G±(t)q̂±(t), the Hamiltonian ( 2.12) is transformed to

Ĥ (t) = 1

2

2∑
i=1

[
P̂ 2
i +
2

i (t)Q̂
2
i + εi(t)P̂ iQ̂i

]
(2.13)

where

[Q̂i, P̂ i] = i�δij δij =
{

1 i = j

0 i �= j
(2.14)

while 
i(t) = (ω0 ± g(t)) and εi(t) = −(d ln
i/dt).
Since we assume that the commutation relation (2.14) holds, equation (2.13) is simply

identified as the linear superposition of two independent oscillators. Thus from equations (2.4)
and (2.5) together with equation (2.13) we obtain the following:

dαi
dt

+ βi = 1

2
εi(t)αi

dβi
dt

+
1

2
εi(t)βi = 
2

i (t)αi . (2.15)

Eliminating βi we find that

d2αi

dt2
+
2

Qi
(t)αi = 0 
Qi

(t) =
(

2
i (t)− 1

2
ε′
i −

1

4
ε2
i

)1/2

. (2.16)

We may denote any solution of equation (2.16) by αi(t) = σ
(0)
i (t). Then the invariant

assumes the form

Î (Q)(t) =
2∑
i=1

[
σ
(0)
i (t)P̂ i +

(
εi

2
σ
(0)
i (t)− dσ (0)i (t)

dt

)
Q̂i

]
. (2.17)

Eliminating αi(t) we find that

d2βi

dt2
+ 2εi

dβi
dt

+
2
Pi
(t)βi = 0 
Pi (t) =

(

2
i (t) +

1

2
ε′
i +

3

4
ε2
i

)1/2

. (2.18)

If we denote by ρ(0)i (t) = βi(t) any solution of equation (2.18), then the invariant takes
the form

Î (P )(t) =
2∑
i=1

[
ρ
(0)
i (t)Q̂i +

(
εi

2
ρ
(0)
i (t) +

dρ(0)i (t)

dt

)
P̂ i

/

2
i (t)

]
. (2.19)

Equations (2.17) and (2.19) represent two classes of linear constants of the motion.

2.1.2. Complex invariants. In order to obtain a complex invariant for the present system, we
use equation (2.10). Thus, after we rewrite B(1,2) and ψ(1,2) in terms of Ĵ (1,2) and Î (1,2) and
make use of the inverse transformations, we obtain the complex invariants in the form

Ĉ1(t) = ω0(Î 2 + iÎ 1) = 1
2 [ω0(q̂1 + q̂2) + i(p̂1 + p̂2)] exp{i(ω0t + k(t))}

(2.20)
Ĉ2(t) = ω0(Ĵ 2 + iĴ 1) = 1

2 [ω0(q̂1 − q̂2) + i(p̂1 − p̂2)] exp{i(ω0t − k(t))}
where the Ĉi(t), i = 1, 2, with their complex conjugates are Dirac variables with evolution in
negative time, which evaluates them at a previous time t = 0.

A second-degree energy-like invariant is

|Ĉ+(t)|2 = [(
p̂2

1 + ω2
0q̂

2
1

)
cos2 k(t) +

(
p̂2

2 + ω2
0 q̂

2
2

)
sin2 k(t) + ω0 (q̂2p̂1 − q̂1p̂2) sin 2k(t)

]
(2.21)
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where Ĉ+(t) = Ĉ1(t)+ Ĉ2(t). Alternatively we may construct another constant of the motion,
such as Ĉ−(t) = Ĉ1(t)− Ĉ2(t), in which case we find

|Ĉ−(t)|2 = [(
p̂2

1 + ω2
0q̂

2
1

)
sin2 k(t) +

(
p̂2

2 + ω2
0q̂

2
2

)
cos2 k(t)− ω0

(
q̂2p̂1 − q̂1p̂2

)
sin 2k(t)

]
.

(2.22)

Note that, from the above equations and at t = 0, we have no interaction between the
modes. Then the constant of the motion in each case is just a free harmonic oscillator. This is
in agreement with the fundamental basis of the theory of the interaction between the modes.

2.1.3. Quadratic invariants. We continue our progress and turn our attention to consider a
quadratic invariant. To introduce a second-degree invariant Î (2)(t) in the form

Î (2)(t) =
2∑
i=1

[
ᾱi (t)q̂

2
i + β̄i (t)p̂2

i + 2γ̄i(t)q̂i p̂i
]

+ (µ1q̂1q̂2 + µ2p̂1p̂2 + µ3q̂1p̂2 + µ4p̂1q̂2)

(2.23)

together with equations (2.3) and (2.5) would lead to the complicated situation in which
we would have to solve ten simultaneous differential equations. However, to avoid this
complication we deal with the diagonalized Hamiltonian (2.13) together with the equation

Î (2)(t) =
2∑
i=1

[
ᾱi (t)Q̂

2
i + β̄i (t)P̂

2
i + 2γ̄i(t)Q̂iP̂ i

]
. (2.24)

In this case we have

dᾱi
dt

+ εi(t)ᾱi = 2
2
i (t)γ̄i

dβ̄i
dt

− εi(t)β̄i = −2γ̄i
dγ̄i
dt

−
2
i (t)β̄i = −ᾱi . (2.25)

Now, if we set β̄i = k
1/2
i σ 2

i (t), where ki are some constants, then after some calculations
we can express the invariant in terms of an auxiliary function σi(t) that satisfies the Pinney
equation [20]

d2σi

dt2
+
2

Qi
(t)σi = 1

σ 3
i


Qi
(t) =

(

2
i (t)− 1

2
ε̇i − 1

4
ε2
i

)1/2

. (2.26)

Thus

Î (Q)(t) =
2∑
i=1

k
1/2
i

[
Q̂2
i

/
σ 2
i + {σiP̂ i + (σiεi(t)/2 − σ̇i )Q̂i}2] . (2.27)

Similarly, if we take ᾱi = k
1/2
i ρ2

i (t), then we obtain another form for the invariant as

Î (P )(t) =
2∑
i=1

k
1/2
i

[
P̂ 2
i

/
ρ2
i +

{
ρiQ̂i + (ρiεi(t)/2 + ρ̇i)P̂ i

/

2
i

}2
]

(2.28)

where ρi(t) satisfies the equation

d2ρi

dt2
+ 2εi(t)

dρi
dt

+
2
pi
ρi = 
4

i

ρ3
i


2
pi

=
(

2
i +

1

2
ε̇i +

3

4
ε2
i

)1/2

. (2.29)
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Equations (2.26) and (2.29) are nonlinear second-orderdifferential equations with variable
coefficients. Their solutions after some manipulations take the forms

σ1(t) = (

1(t)k

1/2
1

)−1/2
[k̃1 ± a1 sin[2(ω0t + k(t)) + φ̄1]]1/2

ρ1(t) = (

1(t)

/
k

1/2
1

)1/2
[k̃1 ∓ a1 sin[2(ω0t + k(t)) + φ̄1]]1/2

(2.30)
σ2(t) = (


2(t)k
1/2
2

)−1/2
[k̃2 ± a2 sin[2(ω0t − k(t)) + φ̄2]]1/2

ρ2(t) = (

2(t)

/
k

1/2
2

)1/2
[k̃2 ∓ a2 sin[2(ω0t − k(t)) + φ̄2]]1/2

where ai, ki , k̃i and φ̄i, i = 1, 2 are arbitrary constants and phases respectively. Thus, if
one uses the inverse transformation (2.10a), (2.10b), then an exact expression for the desired
invariants can be obtained.

As a result of the conditions we have put on the Hamiltonian (1.5) (γ (t) = 0 and
mω = ω0) our treatment of the problem so far is simple. This is because the Hamiltonian
itself in this case is separable (see equations (2.12) and (2.13)).

Finally we may point out that the linear invariants (2.20) give rise to a pair of autonomous
invariants, i.e. the first integrals

Ĵ 1 = Ĉ1(t)Ĉ
†
1(t)

= 1
4

[
ω2

0(q̂1 + q̂2)
2 + (p̂1 + p̂2)

2
]

(2.31)

Ĵ 2 = Ĉ2(t)Ĉ
†
2(t)

= 1
4

[
ω2

0(q̂1 − q̂2)
2 + (p̂1 − p̂2)

2] (2.32)

so that we obtain the separable first integral

Ĵ 3 = 1
2

[
ω2

0

(
q̂2

1 + q̂2
2

)
+
(
p̂2

1 + p̂2
2

)]
(2.33)

and the solution of

Ĵ 3ψ(t) = i�
∂ψ(t)

∂t
(2.34)

follows trivially.
In the following sections we deal with the problem without any restrictions. This means

that we treat the case in which the field’s frequency mω �= ω0 (off-resonance case). The
purpose is to find the linear and quadratic invariants and also to employ the results to obtain
the exact expression for the wavefunction in the coherent states representation.

3. Off-resonance case

We devote this section to considering the more complicated case of finding the linear and
quadratic invariants for the Hamiltonian (1.5). In this case we deal with the problem in the
presence of the detuning parameter effect (off-resonance case). To do so we firstly diagonalize
the Hamiltonian (1.5). This is considered in the following subsection.

3.1. Diagonalized Hamiltonian

In order to diagonalize the Hamiltonian (1.5) we firstly modify equation (2.2) and rewrite the
operators b̂ and ĉ as

b̂ = (ω̄q̂1 + ip̂1)√
2ω̄�

ĉ = (ω0q̂2 + ip̂2)√
2ω0�

(3.1)

where we set ω̄ = mω.



12212 M S Abdalla and P G L Leach

Now, if we substitute equation (3.1) into equation (1.5), we obtain

Ĥ (t) = 1

2

2∑
i=1

(
p̂2
i + ω2

i q̂
2
i

)
+ g(t)

[(√
ω1ω2q̂1q̂2 +

p̂1p̂2√
ω1ω2

)
cos γ (t)

+

(√
ω1

ω2
q̂1p̂2 −

√
ω2

ω1
q̂2p̂1

)
sin γ (t)

]
(3.2)

where we have taken for convenience ω̄ = ω1 and ω0 = ω2. We introduce the canonical
transformations√

ω1q̂1 = Q̄1 cos δ+(t) + P̄ 1 sin δ+(t)

p̂1/
√
ω1 = P̄ 1 cos δ+(t)− Q̄1 sin δ+(t)

(3.3)√
ω2q̂2 = Q̄2 cos δ−(t) + P̄ 2 sin δ−(t)

p̂2/
√
ω2 = P̄ 2 cos δ−(t)− Q̄2 sin δ−(t)

where the time-dependent angles, δ±(t), are given by

δ±(t) = 1
2 [(ω1 + ω2)t ± γ (t)]. (3.4)

Thus one can find that the Hamiltonian (3.2) reduces to

Ĥ (t) = �(t)

2

[(
P̄ 2

1 + Q̄2
1

)− (
P̄ 2

2 + Q̄2
2

)]− g(t)[Q̄1Q̄2 + P̄ 1P̄ 2] (3.5)

where

�(t) = 1
2 (γ̇ (t) + ω2 − ω1) (3.6)

and an overdot indicates the derivative with respect to time. Furthermore, if we invoke the
transformations


Q̄1

Q̄2

P̄ 1

P̄ 2


 =




cos δ −sin δ 0 0
sin δ cos δ 0 0

0 0 cos δ −sin δ
0 0 sin δ cos δ





x̂

ŷ

p̂x

p̂y


 (3.7)

then the Hamiltonian (3.5) reduces immediately to the form

Ĥ (t) = 1
2S(t)

{[
p̂2
x + x̂2

]− [
p̂2
y + ŷ2

]}
+ δ̇(t)(x̂p̂y − ŷp̂x) (3.8)

where

δ(t) = 1

2
tan−1

(
g(t)

�(t)

)
(3.9)

and S(t) =
√
�2(t) + g2(t). Now, if we take g(t)/�(t) = const, then δ̇(t) = 0 and hence the

Hamiltonian (3.8) is immediately diagonalized.
It should be noted that in previous calculations we have taken care of the generating

function completely during the applications of the canonical transformations (see [21]). The
condition g(t)/�(t) = const corresponds to the integrability condition used by Lu [22] which
enabled him to study the problem of coupled oscillators. Alternatively we may introduce
another integrability condition more general than the previous one, that is

δ̇(t) = �
√
�2(t) + g2(t) (3.10)

where � is some constant. In this case the Hamiltonian (3.8) under the transformation

x̂

ŷ

p̂x

p̂y


 =




cos θ 0 0 sin θ
0 cos θ sin θ 0
0 −sin θ cos θ 0

−sin θ 0 0 cos θ





x̂1

ŷ1

p̂x1

p̂y1


 (3.11)
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where θ = 1
2 tan−1 �, becomes diagonal and hence takes the form

Ĥ (t) = 1
2

√
(1 + �2)(�2(t) + g2(t))

[(
p̂2
x1

+ x̂2
1

)− (
p̂2
y1

+ ŷ2
1

)]
. (3.12)

On the other hand one can diagonalize the Hamiltonian (1.5) and rewrite it in terms of the
creation and annihilation operators. This can be done if we define two pairs of Dirac operators
as

Â1(t) =
[
b̂[cos θ cos δ(t) − i sin θ sin δ(t)] exp

(
i

2
γ (t)

)]

+

[
ĉ[cos θ sin δ(t) + i sin θ cos δ(t)] exp

(
− i

2
γ (t)

)]
(3.13)

and

Â2(t) =
[
ĉ[cos θ cos δ(t) + i sin θ sin δ(t)] exp

(
− i

2
γ (t)

)]

−
[
b̂[cos θ sin δ(t)− i sin θ cos δ(t)] exp

(
i

2
γ (t)

)]
. (3.14)

Now, if we substitute equations (3.13) and (3.14) into equation (1.5) and apply the
integrability condition (3.10), then after some calculation we have

Ĥ (t)

�
= µ̇+(t)

(
Â

†
1Â1 +

1

2

)
+ µ̇−(t)

(
Â

†
2Â2 +

1

2

)
(3.15)

where

µ±(t) = [
1
2 (ω1 + ω2)t ± (δ(t)− δ(0)) cosec 2θ

]
. (3.16)

Here we may point out that, although the integrability condition we have introduced is
more general than that of Lu [22], both can be used to diagonalize the Hamiltonian. However,
in principle the integrability conditions would restrict the results and therefore we have to deal
with the unrestricted condition to obtain the most general form of the constants of the motion.
Due to the nature of the present case of two time-dependent coupled oscillators we find that it
is unlikely to avoid any use of the integrability condition.

Despite our doubtful opinion of the feasibility of diagonalizing (3.8 ) in general, we can
make some progress by using the theory of time-dependent linear canonical transformations
[23]. In the case of a quadratic Hamiltonian

Ĥ = 1
2 ẑTAẑ (3.17)

where ẑµ = q̂i , µ = 1, n; i = 1, n and ẑµ = p̂i , µ = n + 1, 2n; i = 1, n, and A is a 2n× 2n
Hermitian matrix, we recall that under the linear canonical transformation

ˆ̄z = W ẑ WJ̃WT = J̃ (3.18)

where W is a 2n × 2n matrix with possibly time-dependent elements and J̃ is the 2n × 2n
symplectic matrix, the transformed Hamiltonian is

H̄ = 1
2

ˆ̄zĀ ˆ̄z (3.19)

and the matrix of the transformation is given by the solution of the homogeneous linear system

Ẇ = J̃ ĀW −WJ̃A. (3.20)

Furthermore, provided the (2n)2 arbitrary constants arising from the integration of (3.20) are
chosen such that the transformation is canonical, i.e. W(t0)J̃W(t0)T = J̃ , at some t0, the
transformation is canonical for all time such that the integration of (3.20) remains valid, i.e.
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for the interval of time containing t0 such that the elements ofA and Ā are continuous functions
of time [24] (p 72).

The number of arbitrary constants arising from the integration of (3.20) is (2n)2 and the
number of constraints imposed by the requirement of canonicity is n(2n− 1). Consequently
there is still choice in the selection of the constants to make the transformation simpler than
indicated by the general solution of (3.20) [25].

The choice of the transformed Hamiltonian is dictated by considerations of ease of solution
of the consequent Heisenberg equations of motion or the Schrödinger equation subject to a
modicum of commonsense. The structure of Ā should reflect that of A so that Ĥ and H̄
describe systems which are qualitatively the same3. In the case of a one-degree-of-freedom
problem it is usual to chooseW such that the canonical transformation is a point transformation.
The price to pay is that Ā cannot be taken to be autonomous. The classic example is that of
the time-dependent harmonic oscillator described by [1, 2]

Ĥ = 1
2 (p̂

2 + ω2(t)q̂2). (3.21)

Under the time-dependent linear point transformation [27]

Q̂ = q̂

ρ(t)
P̂ = ρp̂ − ρ̇q̂ (3.22)

where ρ(t) is a solution of the famous Ermakov–Pinney equation [29, 20]

ρ̈(t) + ω2(t)ρ(t) = 1

ρ3(t)
(3.23)

we obtain

H̄ = 1

2ρ2(t)
(P̂ 2 + Q̂2). (3.24)

Since the time dependence of Ā is multiplicative, the change of time variable to T := ∫
ρ−2 dt

brings one to the equivalent autonomous system

H̃ = 1
2 (P̂

2 + Q̂2) (3.25)

which is readily solved.
The convenience of the choice of a point transformation does not persist for systems of

more than one degree of freedom. We must treat the general linear canonical transformation.
However, there is some compensation in that Ā may be chosen to be a constant matrix [28],
i.e. there is no need for the introduction of new time.

In the case of (3.8)

A =



S(t) 0 0 δ̇(t)

0 −S(t) −δ̇(t) 0
0 −δ̇(t) S(t) 0
δ̇(t) 0 0 −S(t)


 =

[
S(t)K δ̇(t)J

δ̇(t)J T S(t)K

]
(3.26)

where J is the 2 × 2 symplectic matrix and

K :=
[

1 0
0 −1

]
. (3.27)

We note that, since detA = (S2 + δ̇2)2, the matrix A is positive definite for all real S(t) and
δ̇(t) not simultaneously zero.

3 In classical mechanics this is not a problem, but it becomes critical in quantal systems [26].
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A suitable candidate for Ā is

Ā =
[
K 0
0 K

]
(3.28)

for which (3.20) becomes

Ẇ 1 = δ̇W1J̃ + SW2K +KW3

Ẇ 2 = −SW1K + δ̇W2J̃ +KW4
(3.29)

Ẇ 3 = δ̇W3J̃ + SW4K −KW1

Ẇ 4 = −SW3K + δ̇W4J̃ −KW2

where we have written

W =
[
W1 W2

W3 W4

]
. (3.30)

For general functions S(t) and δ̇(t) the solution of (3.29) is not transparent and normally
we would have to resort to numerical methods. However, we do note that we have a formal
definition of the canonical transformation of Ĥ (3.8) to

H̄ = 1
2

[(
P̂ 2
X + X̂2

)− (
P̂ 2
Y + Ŷ 2

)]
(3.31)

which is a system we may solve explicitly. In particular we have the creation and annihilation
operators. Furthermore under the transformation (3.18) we have the explicit expressions for
the invariant H̄ and the creation and annihilation operators in terms of the variables of (3.8)
and the elements of W(t) which are simply scalar functions of time. Consequently we may
make all formal operations with these operators with results which depend on time functions
the explicit expressions for which require the solution of (3.29) subject to (3.18b). Numerical
integration of (3.29) enables the final result to be expressed in a numerically useful form [30] .

3.2. Linear invariants

Similarly to that given by equation (2.4) we define a linear invariant Ĵ (1)(t) in the form

Ĵ (1)(t) =
2∑
i=1

(µi(t)p̂i + νi(t)q̂ i ). (3.32)

If we substitute equation (3.1) into equation (3.32), we can rewrite the linear invariant in
the form

Ĵ (1)(t) =
2∑
j=1

(
λ̄j (t)âj + λ̄∗

j (t)â
†
j

)
(3.33)

where we have taken for convenience b = â1 and c = â2, while λ̄i is given by

λ̄j (t) =
√

�

2ωj
[νj (t)− iωjµj(t)] j = 1, 2. (3.34)

Thus, from equations (1.5), (3.33) and (3.34) together with equation (2.5), we obtain

dλ̄1

dt
= iω1λ̄1 + ig eiγ (t)λ̄2

dλ̄2

dt
= iω2λ̄2 + ig e−iγ (t)λ̄1. (3.35)

In the framework of the integrability condition (3.10) the above coupled equations can
be solved and hence the constants of the motion are determined. However, we can find the
solution for some other special cases. For example, if we consider the case in which the phase
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pump γ (t) = (ω1 − ω2)t , then we have

νi(t) = ai cos(k(t) + ωit) + bi cos(k(t)− ωit) (3.36)
µi(t) = bi sin(k(t)− ωit)− ai sin(k(t) + ωit) i = 1, 2

where a1 = a2 and b1 = −b2.
Moreover, and under the restrictive integrability condition (3.10), the general solution of

equation (3.35) is given by

λ̄1(t) = eiω+(t)[l cos δ(t) cos(η1 + (δ(t)− δ(0)) cosec 2θ)

− j sin δ(t) sin(η2 + (δ(t)− δ(0)) cosec 2θ)]
(3.37)

λ̄2(t) = e−iω−(t)[j cos δ(t) sin(η1 + (δ(t)− δ(0)) cosec 2θ)

+ l sin δ(t) cos(η2 + (δ(t)− δ(0)) cosec 2θ)]

where ω±(t) = [(δ(t)− δ(0))± (ω1 + ω2)t] , while l, j and ηi are arbitrary constants and
phases respectively. Thus from equations (3.34) and (3.37) we can easily obtain the explicit
expression for both νj and µj . Hence the desired result can be found.

3.3. Quadratic invariants

Now we turn our attention to consider the quadratic invariants for the off-resonance case. The
situation in this case is more complicated than that which we have studied before. This is in
fact due to the complexity of equation (2.23).

3.3.1. Real invariants. We start this subsection by considering the real invariant for
the Hamiltonian (1.5) under the restriction of the integrability condition (3.10). For this
purpose we use the diagonalized Hamiltonian (3.12) together with the invariant given by
equation (2.24). However, we firstly rewrite this Hamiltonian in the form

H(t) → H̄ (t) = 1

2

[{
P̄ 2
x + η2(t)X̄2 − η̇

2η
(X̄P̄ x + P̄ xX̄)

}

−
{
P̄ 2
y + η2(t)Ȳ 2 +

η̇

2η
(Ȳ P̄ y + P̄ y Ȳ )

}]
(3.38)

where we have taken η(t) =
√
(1 + �2)(�2(t) + g2(t)), define x1 = √

η(t)X̄ and P̄ x =√
η(t)px1 . Also we defined y1 = √

η(t)Ȳ and P̄ y = √
η(t)py1 . In this case we obtain the

following invariants:

I (p)(t) =
[{(

σ̄1x1 +
˙̄σ 1

η
px1

)2

+
C1

ησ̄ 2
1

p2
x1

}
+

{(
σ̄2y1 − ˙̄σ 2

η
py1

)2

+
C2

ησ̄ 2
2

p2
y1

}]
(3.39)

and

I (q)(t) =


{(
ρ̄1px1 − ˙̄ρ1

η
x1

)2

+
C̄1

ρ̄2
1

x2
1

}
+



(
ρ̄2py1 +

.

ρ̄2

η
y1

)2

+
C̄2

ρ̄2
2

y2
1




 (3.40)

where Ci and C̄i, i = 1, 2 are arbitrary constants while σ̄1,2(t) and ρ̄1,2(t) are functions of the
time satisfying the Pinney equation [17]

d2f

dt2
−

.
η

η

df

dt
+ η2f = η2B

f 3
(3.41)
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which has the solution

f (t) = ±
(

1

2
A +

[
1

4
A2 − B

]1/2

sin

(
C ± 2

√
1 + �2

�
{δ(t)− δ(0)}

))1/2

(3.42)

where A,B and C are constant parameters.

3.4. Complex invariants

In the previous work we have seen that to obtain real invariants we used several canonical
transformations to reduce the Hamiltonian (3.2) to a simpler form. Now we seek for a complex
invariant of the Hamiltonian (1.5) but without employing any transformations similar to those
which we have used above. For this purpose we define the complex invariant Ĵ (2)(t) in the
form

Ĵ (2)(t) =
2∑
i=1

(
αi â

2
i + γiâ

†
i âi + δ1â1â2 + δ2â1â

†
2 + c.c.

)
(3.43)

where αi(t), δi(t), i = 1, 2, are time-dependent complex functions while γi(t), i = 1, 2, are
real functions depending upon time. Inserting equations (3.43) and (1.5) into the equation

dĴ (2)(t)

dt
= ∂Ĵ (2)(t)

∂t
+

1

i�
[Ĵ (2)(t),H ] = 0 (3.44)

we obtain the following differential equations:
dα1

dt
− 2iω1α1 = ig eiγ δ1

dα2

dt
− 2iω2α2 = ig e−iγ δ1 (3.45)

dδ1

dt
− i(ω1 + ω2)δ1 − 2ig e−iγ α1 − 2ig eiγ α2 = 0 (3.46)

dδ2

dt
+ i(ω2 − ω1)δ2 + ig eiγ (γ1 − γ2) = 0 (3.47)

dγ1

dt
− ig eiγ δ∗

2 + ig e−iγ δ2 = 0
dγ2

dt
+ ig eiγ δ∗

2 − ig e−iγ δ2 = 0. (3.48)

Here we should note that in our procedure we have replaced b and c by a1 and a2

while mω and ω0 have been replaced by ω1 and ω2, respectively. Thus, if we define
ζ1(t) = √

α1 exp(−iω1t), then we find that

δ1(t) = −2i
ζ1(t)ζ̇1(t)

g(t)
exp [i(2ω1t − γ (t))]

α2(t) = − ζ̇
2
1 (t)

g2(t)
exp [2i(ω1t − γ (t))] +

C̃1

ζ 2
1 (t)

exp(2iω2t) (3.49)

and hence the constant of the motion can be written as

Ĵ (2)(t) =
[(
ζ1â1 − i

ζ̇1

g
e−iγ â2

)2

e2iω1t +
C̃1

ζ 2
1

â2
2 e2iω2t

]

+

[{(
C̃3 ±

√
C̃2 − |δ2|2

)
â
†
1â1 +

(
C̃3 ∓

√
C̃2 − |δ2|2

)
â
†
2â2 + δ2â1â

†
2

}
+ c.c.

]
(3.50)

where the C̃i , i = 1, 2, 3, are arbitrary constants.
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Now we need to find the explicit expression of the functionsαi(t), δi(t) andγi(t), i = 1, 2.
This can be achieved if one takes u(t) exp

[
i
∫ t

0�(t
′) dt ′

]
equal to the function ζ1(t). In this

case and after some calculation we find that the function u(t) satisfies the equation

d2u

dt2
− ġ

g

du

dt
+

[
g2 +�2 + i

(
�̇− ġ

g
�

)]
u = −g

2

u3
C̃1. (3.51)

A closed-form solution of equation (3.51) can be obtained provided we use the integrability
condition �(t)/g(t) = ξ1. Reverting to α1(t) we then have after some simple algebra the
expression

α1(t) =
[

ξ2

2
(
1 + ξ2

1

) +

[
C̃1

1 + ξ2
1

+
ξ2

2

/
4(

1 + ξ2
1

)2

]
sin

[
ξ3 ± 2

√
1 + ξ2

1 k(t)

]]

× exp

(
2i
∫ t

0
�(t ′) dt ′ + ω1t

)
(3.52)

where ξj , j = 1, 2, 3, are constants. If one uses equation (3.49) together with equation (3.52),
the explicit expression for the functions δ1(t) and α2(t) can be determined. On the other hand
to obtain the functions γi(t), i = 1, 2, and δ2(t) we may use the fact that γ1(t)+γ2(t) = const.
In this case the exact expression can be written as follows:

γ1,2(t) = ζ0 ± 1√
1 + ξ2

1

sin

[
ζ1 ± 2

√
1 + ξ2

1 k(t)

]
(3.53)

δ2(t) =
[
ζ2 + iζ3 exp

[
−i

(
ζ1 + 2

√
1 + ξ2

1 k(t)

)]]
exp(iγ (t)) (3.54)

where ζj , j = 0, 1, 2, 3, are arbitrary constants and k(t) is the time-dependent function that
has already been defined.

At this stage we turn our attention to consider another important point, that is the
eigenfunctions and the corresponding eigenvalues for the constants of the motion. We present
this in the following section.

4. Eigenfuctions and eigenvalues

In this section we attend to finding the eigenfunctions and the corresponding eigenvalues for
the real quadratic invariants. To reach our goal we consider the quadratic invariant given by
equation (3.39). It is noted that this invariant consists of two commutating parts and therefore, if
we factorize each part into two complex product quantities and define the following operators:

F̂ 1 = (
2�

√
C1/η(t)

)−1/2
{
σ̄1x1 +

( ˙̄σ 1

η(t)
+ i

√C1/η(t)

σ̄1

)
px1

}
(4.1)

F̂ 2 = (
2�

√
C2/η(t)

)−1/2
{
σ̄2y1 −

( ˙̄σ 2

η(t)
− i

√C2/η(t)

σ̄2

)
py1

}
the constant of the motion in this case can be diagonalized and rewritten in the form

I (p)(t) = 2�√
η(t)

[√
C1

(
F̂

†
1F̂ 1 +

1

2

)
+
√
C2

(
F̂

†
2F̂ 2 +

1

2

)]
. (4.2)

This means that the operators (4.1) are the correct operators to diagonalize the constants of
the motion. Therefore we employ them to find the eigenfunctions and the corresponding
eigenvalues for the constants of the motion. It is interesting to point out here that the above
Dirac operators, equation (4.1) together with their Hermitian conjugates may be regarded as
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annihilation and creation operators and satisfy the commutation relation
[
F̂ i , F̂

†
j

] = δij = 1
if i = j and zero otherwise.

Now, if we define the coherent states

|ς1, ς2〉 = exp

(
−1

2
[|ς1|2 + |ς2|2]

) ∞∑
n1,n2=0

ς
n1
1 ς

n2
2√

n1!n2!
|n1, n2〉 (4.3)

with the properties F̂ i|ς1, ς2〉 = ςi|ς1, ς2〉, then the expectation value for the invariant I (p)(t)
equation (4.2) with respect to these states is

〈I (p)(t)〉 = 2�√
η(t)

[√
C1

(
|ς1|2 +

1

2

)
+
√
C2

(
|ς2|2 +

1

2

)]
. (4.4)

Before we proceed further we convert the operators (4.1) and express them in their physical
coordinates and momenta. To do so we use the inverse transformation


x1

px1

y1

py1


 =



f1 f3 f2 −f4

−f3 f1 f4 f2

−g2 −g3 g1 −g4

g3 −g2 g4 g1






√
ω1q1

p1/
√
ω1√

ω2q2

p2/
√
ω2


 (4.5)

where the fi, i = 1, 2, 3, 4, are

f1 = cos δ+ cos δ cos θ + sin δ+ sin δ sin θ

f2 = cos δ− sin δ cos θ − sin δ− cos δ sin θ
(4.6)

f3 = cos δ+ sin δ sin θ − sin δ+ cos δ cos θ

f4 = cos δ− cos δ sin θ + sin δ− sin δ cos θ

and the gi, i = 1, 2, 3, 4, are

g1 = cos δ− cos δ cos θ − sin δ− sin δ sin θ

g2 = cos δ+ sin δ cos θ + sin δ+ cos δ sin θ
(4.7)

g3 = cos δ+ cos δ sin θ − sin δ+ sin δ cos θ

g4 = cos δ− sin δ sin θ + sin δ− cos δ cos θ.

However, the expression of the operators in this case is complicated. Therefore to avoid
any repetition we give the explicit expression for the wavefunction in terms of these physical
quantities. From the above equations (4.1) and (4.5) and after simple algebra we have

�ς(q1, q2, t) = N exp

(
iω1

2�l

[{r2(J1f3 − σ̄1f1) + s2(σ̄2g2 + J2g3)}q2
1

])

× exp

(−iω2

2�l

[{r1(σ̄1f2 + J1f4) + s1(J2g4 − σ̄2g1)}q2
2

])

× exp

(
i
√
ω1ω2

�l
[{s2(J2g4 − σ̄1g1)− r2(σ̄1f2 + J1f4)}q1q2]

)

× exp

(
i

l

√
2ω1

�

[{
ς1r2(C1/η)

1/4 + ς2s2(C2/η)
1/4
}
q1
])

× exp

(
i

l

√
2ω2

�

[{
ς1r1(C1/η)

1/4 − ς2s1(C2/η)
1/4} q2

])
(4.8)
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where l = (s1r2 + s2r1) and N is the normalization constant to be determined, while si , ri and
Ji(t), i = 1, 2, are given by

s1 = σ̄1f3 + J1f1 s2 = J1f2 − σ̄1f4

r1 = J2g2 − σ̄2g3 r2 = J2g1 + σ̄2g4

Jk(t) =
.

σ̄ k

η(t)
± i

√Ck/η(t)
σ̄k

k = 1, 2.

(4.9)

To complete our work we have to determine the value of the normalization constant N.
This can be obtained from the relation∫ ∞

−∞
|�ς(q1, q2, t)|2 dq1 dq2 = 1. (4.10)

Therefore, if we insert equation (4.8) together with its complex conjugate into
equation (4.10) and evaluate the integral, we attain our goal. However, it is noted that all
the coefficients of the q in this case are complex, and therefore to simplify matters we replace
these quantities by zj = uj + ivj , j = 1, . . . , 5. Thus after some calculation we have the
following expression:

N =
[
ω1ω2

(
v2

3 + v1v2
)]1/4

√
π�|l| exp

[
−
(
v2v

2
4 + 2v3v4v5 − v1v

2
5

)
|l|2 (v2

3 + v1v2
)

]
(4.11)

provided v1 > 0, and v2
3 + v1v2 < 0, and this implies that the quantity v2 must be negative in

sign and its value greater than v2
3

/
v1. The above normalization factor always holds as long as

we guarantee that the constant Ck �= 0. This means that the coefficients of the q are complex.

5. Conclusion

In the present paper we have introduced a Hamiltonian model which consists of a field–atom
interaction. The system has been transformed to a time-dependent field–field interaction in a
frequency converter form. We have handled the problem of constants of the motion for such a
system in two different categories. Firstly we have concentrated on finding the real invariants
and then secondly on obtaining the complex invariants. In each case we have considered both
linear and quadratic invariants. Our main purpose in this work is to extend previous work
(simple time-dependent harmonic oscillators) and to deal with two-dimensional real physical
systems. In the meantime our purpose is also to direct the attention of other researchers to
consider the invariant with its open classes of parameters instead of the Hamiltonian itself.
This way is more complicated than the other to treat. However, advances in computational
capacity may open the door for a deeper understanding of the physical problem.
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